Embedding Distance
To measure semantic similarity (or dissimilarity) between a prediction and a reference label string, you could use a vector distance metric between the two embedded representations using the embedding_distance
evaluator.
Note: This returns a distance score, meaning that the lower the number, the more similar the prediction is to the reference, according to their embedded representation.
import { loadEvaluator } from "langchain/evaluation";
import { FakeEmbeddings } from "langchain/embeddings/fake";
const chain = await loadEvaluator("embedding_distance");
const res = await chain.evaluateStrings({
prediction: "I shall go",
reference: "I shan't go",
});
console.log({ res });
/*
{ res: { score: 0.09664669666115833 } }
*/
const res1 = await chain.evaluateStrings({
prediction: "I shall go",
reference: "I will go",
});
console.log({ res1 });
/*
{ res1: { score: 0.03761174400183265 } }
*/
// Select the Distance Metric
// By default, the evalutor uses cosine distance. You can choose a different distance metric if you'd like.
const evaluator = await loadEvaluator("embedding_distance", {
distanceMetric: "euclidean",
});
// Select Embeddings to Use
// The constructor uses OpenAI embeddings by default, but you can configure this however you want.
const embedding = new FakeEmbeddings();
const customEmbeddingEvaluator = await loadEvaluator("embedding_distance", {
embedding,
});
const res2 = await customEmbeddingEvaluator.evaluateStrings({
prediction: "I shall go",
reference: "I shan't go",
});
console.log({ res2 });
/*
{ res2: { score: 2.220446049250313e-16 } }
*/
const res3 = await customEmbeddingEvaluator.evaluateStrings({
prediction: "I shall go",
reference: "I will go",
});
console.log({ res3 });
/*
{ res3: { score: 2.220446049250313e-16 } }
*/
API Reference:
- loadEvaluator from
langchain/evaluation
- FakeEmbeddings from
langchain/embeddings/fake