VectorStore Agent Toolkit
This example shows how to load and use an agent with a vectorstore toolkit.
import { OpenAI } from "langchain/llms/openai";
import { HNSWLib } from "langchain/vectorstores/hnswlib";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";
import * as fs from "fs";
import {
VectorStoreToolkit,
createVectorStoreAgent,
VectorStoreInfo,
} from "langchain/agents";
const model = new OpenAI({ temperature: 0 });
/* Load in the file we want to do question answering over */
const text = fs.readFileSync("state_of_the_union.txt", "utf8");
/* Split the text into chunks using character, not token, size */
const textSplitter = new RecursiveCharacterTextSplitter({ chunkSize: 1000 });
const docs = await textSplitter.createDocuments([text]);
/* Create the vectorstore */
const vectorStore = await HNSWLib.fromDocuments(docs, new OpenAIEmbeddings());
/* Create the agent */
const vectorStoreInfo: VectorStoreInfo = {
name: "state_of_union_address",
description: "the most recent state of the Union address",
vectorStore,
};
const toolkit = new VectorStoreToolkit(vectorStoreInfo, model);
const agent = createVectorStoreAgent(model, toolkit);
const input =
"What did biden say about Ketanji Brown Jackson is the state of the union address?";
console.log(`Executing: ${input}`);
const result = await agent.invoke({ input });
console.log(`Got output ${result.output}`);
console.log(
`Got intermediate steps ${JSON.stringify(result.intermediateSteps, null, 2)}`
);
API Reference:
- OpenAI from
langchain/llms/openai
- HNSWLib from
langchain/vectorstores/hnswlib
- OpenAIEmbeddings from
langchain/embeddings/openai
- RecursiveCharacterTextSplitter from
langchain/text_splitter
- VectorStoreToolkit from
langchain/agents
- createVectorStoreAgent from
langchain/agents
- VectorStoreInfo from
langchain/agents