MultiVector Retriever
It can often be beneficial to store multiple vectors per document. LangChain has a base MultiVectorRetriever which makes querying this type of setup easier!
A lot of the complexity lies in how to create the multiple vectors per document. This notebook covers some of the common ways to create those vectors and use the MultiVectorRetriever.
Some methods to create multiple vectors per document include:
- smaller chunks: split a document into smaller chunks, and embed those (e.g. the ParentDocumentRetriever)
- summary: create a summary for each document, embed that along with (or instead of) the document
- hypothetical questions: create hypothetical questions that each document would be appropriate to answer, embed those along with (or instead of) the document
Note that this also enables another method of adding embeddings - manually. This is great because you can explicitly add questions or queries that should lead to a document being recovered, giving you more control.
Smaller chunks
Often times it can be useful to retrieve larger chunks of information, but embed smaller chunks. This allows for embeddings to capture the semantic meaning as closely as possible, but for as much context as possible to be passed downstream. NOTE: this is what the ParentDocumentRetriever does. Here we show what is going on under the hood.
import * as uuid from "uuid";
import { MultiVectorRetriever } from "langchain/retrievers/multi_vector";
import { FaissStore } from "langchain/vectorstores/faiss";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";
import { InMemoryStore } from "langchain/storage/in_memory";
import { TextLoader } from "langchain/document_loaders/fs/text";
import { Document } from "langchain/document";
const textLoader = new TextLoader("../examples/state_of_the_union.txt");
const parentDocuments = await textLoader.load();
const splitter = new RecursiveCharacterTextSplitter({
chunkSize: 10000,
chunkOverlap: 20,
});
const docs = await splitter.splitDocuments(parentDocuments);
const idKey = "doc_id";
const docIds = docs.map((_) => uuid.v4());
const childSplitter = new RecursiveCharacterTextSplitter({
chunkSize: 400,
chunkOverlap: 0,
});
const subDocs = [];
for (let i = 0; i < docs.length; i += 1) {
const childDocs = await childSplitter.splitDocuments([docs[i]]);
const taggedChildDocs = childDocs.map((childDoc) => {
// eslint-disable-next-line no-param-reassign
childDoc.metadata[idKey] = docIds[i];
return childDoc;
});
subDocs.push(...taggedChildDocs);
}
const keyValuePairs: [string, Document][] = docs.map((doc, i) => [
docIds[i],
doc,
]);
// The docstore to use to store the original chunks
const docstore = new InMemoryStore();
await docstore.mset(keyValuePairs);
// The vectorstore to use to index the child chunks
const vectorstore = await FaissStore.fromDocuments(
subDocs,
new OpenAIEmbeddings()
);
const retriever = new MultiVectorRetriever({
vectorstore,
docstore,
idKey,
// Optional `k` parameter to search for more child documents in VectorStore.
// Note that this does not exactly correspond to the number of final (parent) documents
// retrieved, as multiple child documents can point to the same parent.
childK: 20,
// Optional `k` parameter to limit number of final, parent documents returned from this
// retriever and sent to LLM. This is an upper-bound, and the final count may be lower than this.
parentK: 5,
});
// Vectorstore alone retrieves the small chunks
const vectorstoreResult = await retriever.vectorstore.similaritySearch(
"justice breyer"
);
console.log(vectorstoreResult[0].pageContent.length);
/*
390
*/
// Retriever returns larger result
const retrieverResult = await retriever.getRelevantDocuments("justice breyer");
console.log(retrieverResult[0].pageContent.length);
/*
9770
*/
API Reference:
- MultiVectorRetriever from
langchain/retrievers/multi_vector
- FaissStore from
langchain/vectorstores/faiss
- OpenAIEmbeddings from
langchain/embeddings/openai
- RecursiveCharacterTextSplitter from
langchain/text_splitter
- InMemoryStore from
langchain/storage/in_memory
- TextLoader from
langchain/document_loaders/fs/text
- Document from
langchain/document
Summary
Oftentimes a summary may be able to distill more accurately what a chunk is about, leading to better retrieval. Here we show how to create summaries, and then embed those.
import * as uuid from "uuid";
import { ChatOpenAI } from "langchain/chat_models/openai";
import { PromptTemplate } from "langchain/prompts";
import { StringOutputParser } from "langchain/schema/output_parser";
import { RunnableSequence } from "langchain/schema/runnable";
import { MultiVectorRetriever } from "langchain/retrievers/multi_vector";
import { FaissStore } from "langchain/vectorstores/faiss";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";
import { InMemoryStore } from "langchain/storage/in_memory";
import { TextLoader } from "langchain/document_loaders/fs/text";
import { Document } from "langchain/document";
const textLoader = new TextLoader("../examples/state_of_the_union.txt");
const parentDocuments = await textLoader.load();
const splitter = new RecursiveCharacterTextSplitter({
chunkSize: 10000,
chunkOverlap: 20,
});
const docs = await splitter.splitDocuments(parentDocuments);
const chain = RunnableSequence.from([
{ content: (doc: Document) => doc.pageContent },
PromptTemplate.fromTemplate(`Summarize the following document:\n\n{content}`),
new ChatOpenAI({
maxRetries: 0,
}),
new StringOutputParser(),
]);
const summaries = await chain.batch(
docs,
{},
{
maxConcurrency: 5,
}
);
const idKey = "doc_id";
const docIds = docs.map((_) => uuid.v4());
const summaryDocs = summaries.map((summary, i) => {
const summaryDoc = new Document({
pageContent: summary,
metadata: {
[idKey]: docIds[i],
},
});
return summaryDoc;
});
const keyValuePairs: [string, Document][] = docs.map((originalDoc, i) => [
docIds[i],
originalDoc,
]);
// The docstore to use to store the original chunks
const docstore = new InMemoryStore();
await docstore.mset(keyValuePairs);
// The vectorstore to use to index the child chunks
const vectorstore = await FaissStore.fromDocuments(
summaryDocs,
new OpenAIEmbeddings()
);
const retriever = new MultiVectorRetriever({
vectorstore,
docstore,
idKey,
});
// We could also add the original chunks to the vectorstore if we wish
// const taggedOriginalDocs = docs.map((doc, i) => {
// doc.metadata[idKey] = docIds[i];
// return doc;
// });
// retriever.vectorstore.addDocuments(taggedOriginalDocs);
// Vectorstore alone retrieves the small chunks
const vectorstoreResult = await retriever.vectorstore.similaritySearch(
"justice breyer"
);
console.log(vectorstoreResult[0].pageContent.length);
/*
1118
*/
// Retriever returns larger result
const retrieverResult = await retriever.getRelevantDocuments("justice breyer");
console.log(retrieverResult[0].pageContent.length);
/*
9770
*/
API Reference:
- ChatOpenAI from
langchain/chat_models/openai
- PromptTemplate from
langchain/prompts
- StringOutputParser from
langchain/schema/output_parser
- RunnableSequence from
langchain/schema/runnable
- MultiVectorRetriever from
langchain/retrievers/multi_vector
- FaissStore from
langchain/vectorstores/faiss
- OpenAIEmbeddings from
langchain/embeddings/openai
- RecursiveCharacterTextSplitter from
langchain/text_splitter
- InMemoryStore from
langchain/storage/in_memory
- TextLoader from
langchain/document_loaders/fs/text
- Document from
langchain/document
Hypothetical queries
An LLM can also be used to generate a list of hypothetical questions that could be asked of a particular document. These questions can then be embedded and used to retrieve the original document:
import * as uuid from "uuid";
import { ChatOpenAI } from "langchain/chat_models/openai";
import { PromptTemplate } from "langchain/prompts";
import { RunnableSequence } from "langchain/schema/runnable";
import { MultiVectorRetriever } from "langchain/retrievers/multi_vector";
import { FaissStore } from "langchain/vectorstores/faiss";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";
import { InMemoryStore } from "langchain/storage/in_memory";
import { TextLoader } from "langchain/document_loaders/fs/text";
import { Document } from "langchain/document";
import { JsonKeyOutputFunctionsParser } from "langchain/output_parsers";
const textLoader = new TextLoader("../examples/state_of_the_union.txt");
const parentDocuments = await textLoader.load();
const splitter = new RecursiveCharacterTextSplitter({
chunkSize: 10000,
chunkOverlap: 20,
});
const docs = await splitter.splitDocuments(parentDocuments);
const functionsSchema = [
{
name: "hypothetical_questions",
description: "Generate hypothetical questions",
parameters: {
type: "object",
properties: {
questions: {
type: "array",
items: {
type: "string",
},
},
},
required: ["questions"],
},
},
];
const functionCallingModel = new ChatOpenAI({
maxRetries: 0,
modelName: "gpt-4",
}).bind({
functions: functionsSchema,
function_call: { name: "hypothetical_questions" },
});
const chain = RunnableSequence.from([
{ content: (doc: Document) => doc.pageContent },
PromptTemplate.fromTemplate(
`Generate a list of 3 hypothetical questions that the below document could be used to answer:\n\n{content}`
),
functionCallingModel,
new JsonKeyOutputFunctionsParser<string[]>({ attrName: "questions" }),
]);
const hypotheticalQuestions = await chain.batch(
docs,
{},
{
maxConcurrency: 5,
}
);
const idKey = "doc_id";
const docIds = docs.map((_) => uuid.v4());
const hypotheticalQuestionDocs = hypotheticalQuestions
.map((questionArray, i) => {
const questionDocuments = questionArray.map((question) => {
const questionDocument = new Document({
pageContent: question,
metadata: {
[idKey]: docIds[i],
},
});
return questionDocument;
});
return questionDocuments;
})
.flat();
const keyValuePairs: [string, Document][] = docs.map((originalDoc, i) => [
docIds[i],
originalDoc,
]);
// The docstore to use to store the original chunks
const docstore = new InMemoryStore();
await docstore.mset(keyValuePairs);
// The vectorstore to use to index the child chunks
const vectorstore = await FaissStore.fromDocuments(
hypotheticalQuestionDocs,
new OpenAIEmbeddings()
);
const retriever = new MultiVectorRetriever({
vectorstore,
docstore,
idKey,
});
// We could also add the original chunks to the vectorstore if we wish
// const taggedOriginalDocs = docs.map((doc, i) => {
// doc.metadata[idKey] = docIds[i];
// return doc;
// });
// retriever.vectorstore.addDocuments(taggedOriginalDocs);
// Vectorstore alone retrieves the small chunks
const vectorstoreResult = await retriever.vectorstore.similaritySearch(
"justice breyer"
);
console.log(vectorstoreResult[0].pageContent);
/*
"What measures will be taken to crack down on corporations overcharging American businesses and consumers?"
*/
// Retriever returns larger result
const retrieverResult = await retriever.getRelevantDocuments("justice breyer");
console.log(retrieverResult[0].pageContent.length);
/*
9770
*/
API Reference:
- ChatOpenAI from
langchain/chat_models/openai
- PromptTemplate from
langchain/prompts
- RunnableSequence from
langchain/schema/runnable
- MultiVectorRetriever from
langchain/retrievers/multi_vector
- FaissStore from
langchain/vectorstores/faiss
- OpenAIEmbeddings from
langchain/embeddings/openai
- RecursiveCharacterTextSplitter from
langchain/text_splitter
- InMemoryStore from
langchain/storage/in_memory
- TextLoader from
langchain/document_loaders/fs/text
- Document from
langchain/document
- JsonKeyOutputFunctionsParser from
langchain/output_parsers