Skip to main content

ClickHouse

Compatibility

Only available on Node.js.

ClickHouse is a robust and open-source columnar database that is used for handling analytical queries and efficient storage, ClickHouse is designed to provide a powerful combination of vector search and analytics.

Setup

  1. Launch a ClickHouse cluster. Refer to the ClickHouse Installation Guide for details.
  2. After launching a ClickHouse cluster, retrieve the Connection Details from the cluster's Actions menu. You will need the host, port, username, and password.
  3. Install the required Node.js peer dependency for ClickHouse in your workspace.

You will need to install the following peer dependencies:

npm install -S @clickhouse/client mysql2

Index and Query Docs

import { ClickHouseStore } from "langchain/vectorstores/clickhouse";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";

// Initialize ClickHouse store from texts
const vectorStore = await ClickHouseStore.fromTexts(
["Hello world", "Bye bye", "hello nice world"],
[
{ id: 2, name: "2" },
{ id: 1, name: "1" },
{ id: 3, name: "3" },
],
new OpenAIEmbeddings(),
{
host: process.env.CLICKHOUSE_HOST || "localhost",
port: process.env.CLICKHOUSE_PORT || 8443,
username: process.env.CLICKHOUSE_USER || "username",
password: process.env.CLICKHOUSE_PASSWORD || "password",
database: process.env.CLICKHOUSE_DATABASE || "default",
table: process.env.CLICKHOUSE_TABLE || "vector_table",
}
);

// Sleep 1 second to ensure that the search occurs after the successful insertion of data.
// eslint-disable-next-line no-promise-executor-return
await new Promise((resolve) => setTimeout(resolve, 1000));

// Perform similarity search without filtering
const results = await vectorStore.similaritySearch("hello world", 1);
console.log(results);

// Perform similarity search with filtering
const filteredResults = await vectorStore.similaritySearch("hello world", 1, {
whereStr: "metadata.name = '1'",
});
console.log(filteredResults);

API Reference:

Query Docs From an Existing Collection

import { ClickHouseStore } from "langchain/vectorstores/clickhouse";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";

// Initialize ClickHouse store
const vectorStore = await ClickHouseStore.fromExistingIndex(
new OpenAIEmbeddings(),
{
host: process.env.CLICKHOUSE_HOST || "localhost",
port: process.env.CLICKHOUSE_PORT || 8443,
username: process.env.CLICKHOUSE_USER || "username",
password: process.env.CLICKHOUSE_PASSWORD || "password",
database: process.env.CLICKHOUSE_DATABASE || "default",
table: process.env.CLICKHOUSE_TABLE || "vector_table",
}
);

// Sleep 1 second to ensure that the search occurs after the successful insertion of data.
// eslint-disable-next-line no-promise-executor-return
await new Promise((resolve) => setTimeout(resolve, 1000));

// Perform similarity search without filtering
const results = await vectorStore.similaritySearch("hello world", 1);
console.log(results);

// Perform similarity search with filtering
const filteredResults = await vectorStore.similaritySearch("hello world", 1, {
whereStr: "metadata.name = '1'",
});
console.log(filteredResults);

API Reference: