TypeORM
To enable vector search in a generic PostgreSQL database, LangChainJS supports using TypeORM with the pgvector
Postgres extension.
Setup
To work with TypeORM, you need to install the typeorm
and pg
packages:
- npm
- Yarn
- pnpm
npm install typeorm
yarn add typeorm
pnpm add typeorm
- npm
- Yarn
- pnpm
npm install pg
yarn add pg
pnpm add pg
Setup a pgvector
self hosted instance with docker-compose
pgvector
provides a prebuilt Docker image that can be used to quickly setup a self-hosted Postgres instance.
Create a file below named docker-compose.yml
:
services:
db:
image: ankane/pgvector
ports:
- 5432:5432
volumes:
- ./data:/var/lib/postgresql/data
environment:
- POSTGRES_PASSWORD=ChangeMe
- POSTGRES_USER=myuser
- POSTGRES_DB=api
API Reference:
And then in the same directory, run docker compose up
to start the container.
You can find more information on how to setup pgvector
in the official repository.
Usage
One complete example of using TypeORMVectorStore
is the following:
import { DataSourceOptions } from "typeorm";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { TypeORMVectorStore } from "langchain/vectorstores/typeorm";
// First, follow set-up instructions at
// https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/typeorm
export const run = async () => {
const args = {
postgresConnectionOptions: {
type: "postgres",
host: "localhost",
port: 5432,
username: "myuser",
password: "ChangeMe",
database: "api",
} as DataSourceOptions,
};
const typeormVectorStore = await TypeORMVectorStore.fromDataSource(
new OpenAIEmbeddings(),
args
);
await typeormVectorStore.ensureTableInDatabase();
await typeormVectorStore.addDocuments([
{ pageContent: "what's this", metadata: { a: 2 } },
{ pageContent: "Cat drinks milk", metadata: { a: 1 } },
]);
const results = await typeormVectorStore.similaritySearch("hello", 2);
console.log(results);
};
API Reference:
- OpenAIEmbeddings from
langchain/embeddings/openai
- TypeORMVectorStore from
langchain/vectorstores/typeorm