Convex
LangChain.js supports Convex as a vector store, and supports the standard similarity search.
Setup
Create project
Get a working Convex project set up, for example by using:
npm create convex@latest
Add database accessors
Add query and mutation helpers to convex/langchain/db.ts
:
convex/langchain/db.ts
export * from "langchain/util/convex";
Configure your schema
Set up your schema (for vector indexing):
convex/schema.ts
import { defineSchema, defineTable } from "convex/server";
import { v } from "convex/values";
export default defineSchema({
documents: defineTable({
embedding: v.array(v.number()),
text: v.string(),
metadata: v.any(),
}).vectorIndex("byEmbedding", {
vectorField: "embedding",
dimensions: 1536,
}),
});
Usage
Ingestion
convex/myActions.ts
"use node";
import { ConvexVectorStore } from "langchain/vectorstores/convex";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { action } from "./_generated/server.js";
export const ingest = action({
args: {},
handler: async (ctx) => {
await ConvexVectorStore.fromTexts(
["Hello world", "Bye bye", "What's this?"],
[{ prop: 2 }, { prop: 1 }, { prop: 3 }],
new OpenAIEmbeddings(),
{ ctx }
);
},
});
API Reference:
- ConvexVectorStore from
langchain/vectorstores/convex
- OpenAIEmbeddings from
langchain/embeddings/openai
Search
convex/myActions.ts
"use node";
import { ConvexVectorStore } from "langchain/vectorstores/convex";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { v } from "convex/values";
import { action } from "./_generated/server.js";
export const search = action({
args: {
query: v.string(),
},
handler: async (ctx, args) => {
const vectorStore = new ConvexVectorStore(new OpenAIEmbeddings(), { ctx });
const resultOne = await vectorStore.similaritySearch(args.query, 1);
console.log(resultOne);
},
});
API Reference:
- ConvexVectorStore from
langchain/vectorstores/convex
- OpenAIEmbeddings from
langchain/embeddings/openai