Skip to main content

Redis

Redis is a fast open source, in-memory data store. As part of the Redis Stack, RediSearch is the module that enables vector similarity semantic search, as well as many other types of searching.

Compatibility

Only available on Node.js.

LangChain.js accepts node-redis as the client for Redis vectorstore.

Setup

  1. Run Redis with Docker on your computer following the docs
  2. Install the node-redis JS client
npm install -S redis

Index docs

import { createClient } from "redis";
import { Document } from "langchain/document";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { RedisVectorStore } from "langchain/vectorstores/redis";

const client = createClient({
url: process.env.REDIS_URL ?? "redis://localhost:6379",
});
await client.connect();

const docs = [
new Document({
metadata: { foo: "bar" },
pageContent: "redis is fast",
}),
new Document({
metadata: { foo: "bar" },
pageContent: "the quick brown fox jumped over the lazy dog",
}),
new Document({
metadata: { baz: "qux" },
pageContent: "lorem ipsum dolor sit amet",
}),
new Document({
metadata: { baz: "qux" },
pageContent: "consectetur adipiscing elit",
}),
];

const vectorStore = await RedisVectorStore.fromDocuments(
docs,
new OpenAIEmbeddings(),
{
redisClient: client,
indexName: "docs",
}
);

await client.disconnect();

API Reference:

Query docs

import { createClient } from "redis";
import { OpenAI } from "langchain/llms/openai";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { RetrievalQAChain } from "langchain/chains";
import { RedisVectorStore } from "langchain/vectorstores/redis";

const client = createClient({
url: process.env.REDIS_URL ?? "redis://localhost:6379",
});
await client.connect();

const vectorStore = new RedisVectorStore(new OpenAIEmbeddings(), {
redisClient: client,
indexName: "docs",
});

/* Simple standalone search in the vector DB */
const simpleRes = await vectorStore.similaritySearch("redis", 1);
console.log(simpleRes);
/*
[
Document {
pageContent: "redis is fast",
metadata: { foo: "bar" }
}
]
*/

/* Search in the vector DB using filters */
const filterRes = await vectorStore.similaritySearch("redis", 3, ["qux"]);
console.log(filterRes);
/*
[
Document {
pageContent: "consectetur adipiscing elit",
metadata: { baz: "qux" },
},
Document {
pageContent: "lorem ipsum dolor sit amet",
metadata: { baz: "qux" },
}
]
*/

/* Usage as part of a chain */
const model = new OpenAI();
const chain = RetrievalQAChain.fromLLM(model, vectorStore.asRetriever(1), {
returnSourceDocuments: true,
});
const chainRes = await chain.call({ query: "What did the fox do?" });
console.log(chainRes);
/*
{
text: " The fox jumped over the lazy dog.",
sourceDocuments: [
Document {
pageContent: "the quick brown fox jumped over the lazy dog",
metadata: [Object]
}
]
}
*/

await client.disconnect();

API Reference:

Create index with options

To pass arguments for index creation, you can utilize the available options offered by node-redis through createIndexOptions parameter.

import { createClient } from "redis";
import { Document } from "langchain/document";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { RedisVectorStore } from "langchain/vectorstores/redis";

const client = createClient({
url: process.env.REDIS_URL ?? "redis://localhost:6379",
});
await client.connect();

const docs = [
new Document({
metadata: { foo: "bar" },
pageContent: "redis is fast",
}),
new Document({
metadata: { foo: "bar" },
pageContent: "the quick brown fox jumped over the lazy dog",
}),
new Document({
metadata: { baz: "qux" },
pageContent: "lorem ipsum dolor sit amet",
}),
new Document({
metadata: { baz: "qux" },
pageContent: "consectetur adipiscing elit",
}),
];

const vectorStore = await RedisVectorStore.fromDocuments(
docs,
new OpenAIEmbeddings(),
{
redisClient: client,
indexName: "docs",
createIndexOptions: {
TEMPORARY: 1000,
},
}
);

await client.disconnect();

API Reference:

Delete an index

import { createClient } from "redis";
import { Document } from "langchain/document";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { RedisVectorStore } from "langchain/vectorstores/redis";

const client = createClient({
url: process.env.REDIS_URL ?? "redis://localhost:6379",
});
await client.connect();

const docs = [
new Document({
metadata: { foo: "bar" },
pageContent: "redis is fast",
}),
new Document({
metadata: { foo: "bar" },
pageContent: "the quick brown fox jumped over the lazy dog",
}),
new Document({
metadata: { baz: "qux" },
pageContent: "lorem ipsum dolor sit amet",
}),
new Document({
metadata: { baz: "qux" },
pageContent: "consectetur adipiscing elit",
}),
];

const vectorStore = await RedisVectorStore.fromDocuments(
docs,
new OpenAIEmbeddings(),
{
redisClient: client,
indexName: "docs",
}
);

await vectorStore.delete({ deleteAll: true });

await client.disconnect();

API Reference: